
Some Einstein spaces and their global properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 395

(http://iopscience.iop.org/0305-4470/14/2/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 395-409. Printed in Great Britain 

Some Einstein spaces and their global properties 

S T C Siklost 
Department of Applied Mathematics, Queen Mary College, Mile End Road, 
London E l  4NS, UK 

Received 4 June 1980, in final form 31 July 1980 

Abstract. The global structure of a class of Einstein spaces is investigated. These spaces 
have algebraically special Weyl tensors and contain homogeneous hypersurfaces. It is 
found that they display simple examples of a variety of interesting configurations involving 
horizons and singularities. 

1. Introduction 

Siklos (1978) has described a method of investigating spatially homogeneous space- 
times by means of the Newman-Penrose formalism. The object then was to examine 
solutions of the Einstein field equations in which the space-like surfaces of homogeneity 
tilt over, becoming null, then time-like (i.e. ‘whimper’ solutions (Ellis and King 1974)), 
and the choice of a null invariant tetrad was found to be particularly suitable for this 
purpose. 

In this paper the same method is used to study the existence and global properties of 
a class of exact solutions. The class consists of Einstein spaces 

R,b = h a , ,  

for which the Weyl tensor is algebraically special, and which admit homogeneous 
hypersurfaces. 

The null tetrad formalism is described in § 2 and some of the relevant equations are 
integrated in 9 3. This method does not apply to all the solutions in the class. Not 
covered are solutions for which the hypersurfaces of homogeneity (i) contain all the 
repeated principal null congruences of the Weyl tensor, or (ii) are all null, or (iii) do not 
admit a simply transitive group of motions. It is not necessary for present purposes to 
find these solutions explicitly, because their global properties are straightforward. 
However, the exact solutions in these exceptional cases will be dealt with in a later paper 
(MacCallum and Siklos 1980, in preparation). 

In 0 4 the exact solutions of the equations given in § 3 are presented and their global 
properties are discussed in 0 5 .  These are summarised in table 1. It emerges that they 
provide examples of many of the different singularity and horizon configurations 
described by Ellis and King (1974). Furthermore, two families of solutions are of 
particular interest; by comparing the spin coefficients given in equation (4.1) and in 
table (3) with those given in Siklos (1978), one can identify these solutions as two of the 

t Present address: Newnham College, Cambridge CB3 9DF, UK. 
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three families which were shown in Siklos (1978) to be the only vacuum spatially 
homogeneous models to admit horizons. 

The notation and conventions of Siklos (1978) are followed throughout this paper, 
except that the function e x p ( - 2 ~ )  is now called simply f ,  

2. The null tetrad formalism 

The space-times under consideration are algebraically special, and are (at least locally) 
foliated by a family of homogeneous hypersurfaces S ( u ) ,  which are invariant under a 
three-parameter Lie group G3 of Killing motions. As in Siklos (1978),  a G3-invariant 
null tetrad (Newman and Penrose 1962) is chosen as follows. I" is a repeated principal 
null direction (PND) of the Weyl tensor (which means that the Weyl tensor components 
'PO and ?I (Newman and Penrose 1962) vanish (Pirani 1964)) and n a  is defined 
uniquely by 

J 2 a a  = p a  + n a ;  lana = 1 (2.1) 

for any given ~ ( u ) ,  where U"" is normal to S ( u ) .  ( m a  + m a )  and i(m" -6") are tangent 
to S ( u )  and can also be chosen to be G3-invariant. The invariant scalar f is positive 
when U'" is time-like, negative when U"" is space-like and vanishes on an isometry 
horizon when U'" is null. The possibility that the only repeated PND lies in the horizon 
must also be borne in mind, although it does not arise here. The remaining freedom in 
the choice of tetrad is 

1" +Ala, n a  + ~ - ' n " ;  A =A(u)  (2.2) 

ma + exp(ie)m" ; e = e(u).  (2.3) 

The spin coefficients for the null tetrad are defined by 

la;b =Re[(y+T)lab +(E+g)lanb-2(Cl +p)l,mb-2?ma1b 

+ 25mamb + 2p6amb - 2t?manb] 

na;b =Re[-(~+F)n,nb-(y+T)n,lb + 2 ( a  +p)n,mb 

+ 2mnanb - 2Amamb - 2 p e a m b  +2vm,lb] 

ma;b =(P-a)mamb+(E-p)ma6b+(y-T)malb+(E-g)manb-iZlamb 

+ Pnamb - i la6b + unaab f elanb - Tnalb + clalb - Knanb. 

With this choice of tetrad, the spin coefficients and the Riemann tensor components are 
invariant (that is, functions of U only). Also 

84 = (fD - A ) 4  = O  (2.4) 

for any invariant function 4 ( u ) ,  where D, A and S are the usual (Newman and Penrose 
1962) derivative operators in the I " ,  n a  and ma directions respectively. When applied 
to the commutation relations for the null tetrad (Siklos 1978), equation (2.4) implies the 
following useful identities: 

Of=-(?+?) (2.5) 

0 = ( E  + p  - i i )  (2.6) 
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using a generalisation of the Goldberg-Sachs theorem (Pirani 1964) and the freedom 
(2.2) and (2.3) under which 

E + A A E - ( ~ / ~ ) D O + ( ~ / ~ ) D A .  

The shear and expansion of the normal congruence, and the quantities nAB and uB 
used to classify the different group types (Ellis and MacCallum 1969) are given in Siklos 
(1978). The criteria for the tetrad to be invariant under a class A group (Ellis and 
MacCallum 1969) are 

T=2@ and p+pf=O.  (2.10) 

3. Integration of the field equations 

When equations (2.4)-(2.9) hold, the Newman-Penrose equations (Newman and 
Penrose 1962) become 

( 3 . 1 ~ )  

( 3 . 1 ~ )  

( 3 . l d )  

(3.le) 

(3.lf) 

( 3 . h )  

(3. li) 
(3. lh)  

(3 . lk)  

(3.11) 

(3.lm) 

(3. ln)  

(3.10) 

(3.lP) 

(3.lq) 
(3.lr) 

The numbering of these equations follows that of Newrhan and Penrose (1962), and 
equatipns (b)  and ( i )  are identically satisfied (the latter by virtue of equations (2.5)- 
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(2.9)).  The only non-trivial Bianchi identities are 

( 3 . 2 ~ )  

(3.2d) 

A P 3 =  3b'92-2(y + 2 p ) 9 3  + (4P - T ) 9 4  (3.2e) 

D94 = -3A 9 2  + 2 ( 3 ~  - p)Y3 + ~ " 4 .  (3 .2 f )  

From equations (3.1) and (3.2) one can find all the spin coefficients in terms of U by 
choosing D such that D4 = d4/du for = qf~(u). The two cases p = 0 and p # 0 have to 
be considered separately. Equations ( 3 . 1 ~ - f )  and (3.26) can be integrated directly, 
using equations (2.6) and ( 3 . l k )  to give 

P =o ,  P = b ,  IT = T O ,  

CY = TO- b, T = To ,  9 2  = 9 z 0  

y = [ ~ T O I T O  + 
and 

+ b (70 - TO)  + b (TO - i i o )  + "2 - A]u + yo (3.3) 

or 
2 2 p = -(U + ia)-', P = bP, .rr=.rrop 9 CY = T O P  - bP, 

T = 706, r0 = 2iafo,  9 2  = *@ 
and 

y = T O T &  - i j )  + b (fop - TOP)  + A / p  + 9 2 / 2 p  + yo. (3.4) 

The quantities a, b and those with the suffix 0 are constants, and the transformations 
U + U +constant and (2.3) with 8 constant have been used to make a and b real. 

Equations ( 3 . 1 ~ )  and (3.1l), which correspond to the Jacobi identities for the three 
invariant space-like vector fields, give 

( ~ 0 + 2 b  - I T O ) T O = O  and 1 ~ 0 i i o  - 3670 - be0 + 4b2 + A - 9 2  = 0 (3.5) 

when p = 0, and 

p =-4b26+2bf0(p-ij)+yo(ij/~ - 1)+9z0(p  + 6 ) / 2 + A ( P / p 2 - 2 / p )  

A =-Top2(T0+2b-~op)/ i i  
(3.6) 

when p # 0. Equations ( 3 . l g )  and ( 3 . l h )  are identically satisfied when p # 0, but yield 

p = 2 b ~ o  + 92 + 2 A  + PO, A = 2 1 ~ o ( ~ o - b ) + A o  (3.7) 

when p = 0. In both cases, v is given by equation (2.7). 
The method of solving the remaining equations is to obtain T in terms of /3 from the 

Bianchi identities for each of the algebraically special Petrov-Pirani types separately, 
and then use equation (3.1). f is derived from equation (2.8) if p # 0, and from equation 
(2.5) otherwise. The calculations are straightforward, though often lengthy. I shall not 
give any further details here. When the spin coefficients are known, the group type is 
found by substitution into the expressions for nBA and aB given in Siklos (1978). Next, 
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the null tetrad is expressed in terms of {Xi} ( i  = 1,2,3) ,  a u-independent triad invariant 
under the appropriate group type, as follows: 

a D = 2-- f-'A s = Pixi. a 
A =  f-+E A'Xi, 

au i au  i 
(3.8) 

Here A' and Pi are functions of U only, which can be found from the spin coefficients by 
means of the commutator relations. Finally, the metric is calculated using gab = 
21(,nb) - 2m(,fib,. Equation (3.8) gives the metric in comoving coordinates, but in some 
cases, notably when the group is of type VII, with h = -6, this leads to elliptic functions. 
These can be avoided by using a tilted coordinate system with D = a/au and the other 
tetrad derivatives as in equation (3.8). 

4. The solutions 

The solutions are given in 00 4.1-4.4 below. Listed in each case are: the spin coefficient 
p ;  the constants A (which is minus one sixth of the usual cosmological constant 
(Hawking and Ellis 1973)), b, r0, TO, yo, and, if p = 0, po and A D ;  the quantityf; and the 
metric. All the remaining spin coefficients can then be found from equations (2.6), (2.7) 
and (3.3)-(3.7). The group type, the number of independent isometries, and other 
information are given when appropriate. 

4.1. Homogeneous plane waves 

The only non-zero spin coefficients in this solution are constant: 

y = i(m +ik), p = -am, A = l  (4.1) 

O = a 2 + a  + l / m 2  (4.2) 

which must satisfy 

and f = -2mu. 

wave (Ehlers and Kundt 1962). The metric in standard plane-wave form is 
The Weyl tensor is of Petrov-Pirani type {4}, and represents a homogeneous plane 

ds2 = -2 de  d e +  2 dp dq + 2H dp2 
with 

1 H = Re{C~2p-2('-iK) 

and 

m2 
k 
m '  

K=-' (4.5) 

The group type is VIh, VIIh or IV, depending on whether ( k 2  - 1) is negative, positive or 
zero respectively. In the first two cases 

(4.6) h = a (1 - a ) / (  1 - k 2 ) .  

The spatially homogeneous parts of the space-time are described by the line element 

t 2 d r 2  
4b2 

ds = d t  v-2aClii dx' dx' (i, j = 1,2)  (4.7) 
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where b = 11 - k2//2m and v = t exp(z/2b), U = t exp(-t/2b). The appropriate forms 
for slij for the three different group types are 

k +cos(2b In v )  
-sin(2b In U )  

-sin(2b In v )  
k -cos(2b In v )  

) for typeVIIh ( k > 1 )  

k +cosh(2b In v )  
-sinh(2b In v )  

-sinh(2b In v )  
) k -cosh(2b In v )  

for type  VI^ ( k  < 1). 

The type IV metric has been given by Harvey and Tsoubelis (1977), the type VIh metric 
by Collins (1972), and the type VIIh metric by Lukash (1975). Note that equations (4.2) 
and (4.5) imply that the solution (4.3) admits a three-parameter group acting tran- 
sitively on space-like hypersurfaces (i.e. is equivalent to (4.7)) only when either 

The constants K and C in equation (4.4) determine the space-time uniquely: two 
space-times with metrics of the form (4.3) are isometric only if these constants agree. It 
is apparent from equations (4 .9 ,  however, that the group invariant constants a ,  b and k 
are not uniquely defined by K and C, so each plane-wave space-time admits various 
foliations corresponding to different values of a, b and k. It can be deduced from the 
relation K ~ -  C2 = (k2 -  1)(1 -4/m2),  and the inequality Iml>2 (which follows from 
equation (4.2)), that plane waves with K > C admit only type VIIh (i.e. k > 1) groups, 
while those with K < C admit only type VIh groups. When K = C, the space-time allows 
type IV groups and also either type VIIh (if C > f) or type VIh (if C < +); this arises from 
the possibility m2 = 4. 

A careful examination of equations (4.5) and (4.2) reveals that if K > C there are for 
each ( K ,  C) two distinct foliations corresponding to type VIIh groups with different 
values of h (these values can be found from equation (4.6)) and if K < C there are four 
possible type VIh groups. In the case K = C either a type VIh group (if C <f) or a type 
VIIh group (if C>;) is replaced by a group of type IV. Clearly the invariant 
hypersurfaces for the different group types cannot coincide unless there is a fourth 
Killing motion acting in the hypersurfaces; but this cannot happen in these cases 
because there would then be an isotropy acting on space-like hypersurfaces and the 
Weyl tensor would therefore have to be Petrov-Pirani type {2,2} or (0). 

O ~ C ~ K 2 + t ( i f K ~ 3 ) O r O ~ C ~ K  ( i f K 2 ; ) .  

4.2. Type VI-119 solutions 

This is the exceptional group type (see Ellis and MacCallum 1969, Siklos 1978) for 
which the constraint equations are degenerate. There are six such solutions in the class 
under consideration. Their metrics are rather similar: 

ds2 = 2w3[du +4uw1-- w 3  + 2w2/b] - (1/2b2)(w12 + w2’)  (4.9) 

ds2 = 2w2[du + u w l  - ( ~ + A U ~ ) W ~ ] - ~ U ~ ( W ’ * + W ~ ~ )  

ds2 = 2w3[du + 2uw’ +4b2(8u2-$)w3 + 2w2] - ( l /8b2)(w”+ wZ2) 

(4.10) 

(4.11) 
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ds’ = 2(w3 - $w’)[dU + 2( U@’ + U’) + (U’ - 1 ) / 2 ( ~  - fw ’)I - ( U  ’ + 1)/2(0 l2 + 2 2 )  

(4.12) 

(4.13) 

The group-invariant one-forms w i  can be taken to be w 1  = dz, w’ = exp(-z) dx and 
w 3  = exp(2z) dy. The coordinate U may differ by a constant multiple from the one 
defined by 1”. The spin coefficients and other properties of these metrics are listed in 
table 2. 

The solutions (4.8) and (4.9) have been given by Kaigorodov (1963) while (4.12) is 
Leroy’s (1970) solution.? The others are believed to be new, though when A = 0 in 
equation (4. lo), one has the Robinson-Trautman solution (Robinson and Trautman 
1962) which was also studied by Collinson and French (1967). The solution (4.13) is 
closely related to Leroy’s solution, but is of Petrov-Pirani type (31) instead of (4). The 
final forms of both these metrics are due to MacCallum. 

ds’ = 2(w2 + $w3)[du - (uw ’ + w 3 )  + (13 u 2  + 17)/32(w2 + $U’)]  - 2(u2 + l ) / ( w Z 2  + w 32). 

4.3. Type (22) solutions 

The remaining space-times in the class under consideration are all of Petrov-Pirani 
type {22), and are related to NUT-de Sitter space (Ruban 1972, Plebanski 1975, Siklos 
1977). The Schwarzschild-de Sitter solution also comes into this category, but is not 
covered by this method because it has no simply transitive three-parameter isometry 
group. 

When p # 0, the metrics can be written in the form 

ds’ = -f-’ dU’+ f (d4  + f ( 0 )  dd)’+(t’+ 12)(d0’+g(0) dd2)  (4.14) 

where f(0) = 21b-l” sin k”’0, g(0) = cos’ k’I28 and 

f = [ - 6 k ( ~ ’ - 1 ’ ) 1 ’ + 2 ~ ~ ~  + R ( ~ ~ + 6 1 ’ ~ ’ - 3 1 ~ ) ] ( ~ ’ +  P-’. (4.15) 

The spin coefficients and the various parameters occurring in equation (4.14) are 
explained in table 3. 

When p = 0, the three possible solutions are each isometric to 

(1211) ds’=(COSh’ x dt2-dx2)-(dy2+COSh2 y dz2). (4.16) 

This line element describes a manifold which is a product of two two-spaces of constant 
negative curvature. If one writes down the six Killing vector fields for (4.16), one can 
easily see the combinations which give rise to the homogeneous hypersurfaces 
described in table 3. 

4.4 Conformally flat solutions 

This is the hardest case, even though the solutions are just Minkowski, de Sitter and 
anti-de Sitter spaces. The difficulties are due partly to the Bianchi identities being 
trivial, and partly to the fact that there is no easy choice of 1,. (One cannot simply 
choose = 0, because this vector field may not be G3-invariant.) It is, however, 

t I am grateful to M A H MacCallum for bringing this solution to my attention. 
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always possible to choose K = u = E = 0, in accordance with equation (2.9). The 
different solutions represent all non-null homogeneous hypersurfaces, except those 
corresponding to m = 0 Schwarzschild, and are given in table 4. 

5. Global properties 

This section deals with some of the global properties of the solutions derived in § 4, in 
particular their horizons and singularities. Using the null tetrad formalism, this 
amounts to little more than a cursory examination of the Weyl tensor components, 
certain spin coefficients, and the function f. 

It can easily be shown that each non-null homogeneous hypersurface is (generalised 
affine parameter (Hawking and Ellis 1973)) complete, and that null homogeneous 
hypersurfaces are complete if and only if their surface gravity (Ellis and King 1974, 
Boyer 1969) vanishes. In the space-times under consideration, the hypersurfaces 
become null when f = 0, and are therefore complete if ( y  + 7) = 0 on the horizon. 

When the horizon is incomplete, it will generally be singular at both 'ends'. A 
singularity occurs when components of the Weyl tensor become unbounded in a frame 
which is parallelly propagated (PP) along some curve, in this case the null generators of 
the horizon. Because the horizon is a surface of homogeneity, Weyl tensor components 
are constant in a group-invariant tetrad. Components in the PP frame, $i, are related to 
these constant components by 

q J j  = p i p ' ,  

where s is an affine parameter along the null geodesics which rule the horizon. Weyl 
tensor components will therefore diverge at s = 0 and s = CO, unless some of the Weyl 
tensor components vanish in the invariant tetrad (in fact, unless the Weyl tensor is 
algebraically special on the horizon). 

Completeness of the congruence normal to the homogeneous hypersurfaces can be 
tested using the affine parameter, t, along these geodesics: 

t = I du. (5.1) 

In the frame parallel along the normal congruence, the Weyl tensor components are 
given by 

f (2 - t ) ' 2  *I (5.2) 

if rr = 0. Equation (5.2) holds approximately provided T is bounded (which is always 
the case here) so it can be used to determine whether or not the normal congruence 
encounters a singularity. 

The causal structures of the more interesting solutions are represented in figures 
1-5, which are conformal diagrams spanned by 1" and n". This is not strictly possible 
unless I" and n a are involutive, that is, unless ( T  + ii) = 0. If ma and f i"  are also 
involutive ( p  =e, = f i )  the metric can be written as the direct sum of two two- 
dimensional metrics, one of which has the conformal structure pictured. If ma and f i"  
are non-involutive, the manifold may be regarded as a fibre bundle for which the 
vertical subspace tangent to the fibre is shown in the diagram (cf Hawking and Ellis 
1973 p 173). When (T  + ii) # 0, the diagram is schematic. 
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5.1. The plane wave solutions 

The solution given by equation (4.1) has f = -2mu, so the surfaces of homogeneity are 
space-like for U < 0, and time-like for U > 0. There is a horizon at U = 0. The t - z part 
of the metric (4.7) is conformal to half of Minkowski space (figure 1). Since the 
space-time is homogeneous (it has a simply transitive G4), the horizon does not define a 
unique hypersurface: it could be chosen to occur at any value of U .  

/ 
\ \  - Non-scalar 

\ u=m singularity \ 

Figure 1. The conformal diagram for the maximally extended t-z plane of the plane-wave 
space-time described by the metric (4.3). 

The normal congruence runs into a singularity as U + 0, as can be seen from equation 
(5.2). This singularity has the causal structure (Geroch et a1 1972) of a null curve. 

The metric (4.7) satisfies not only the exact Einstein vacuum equations, but also the 
linearised ones. The type VIIh case is particularly interesting because it is precisely the 
growing mode found by Collins and Hawking (1973) in their investigation of spatially 
homogeneous perturbations of the Friedmann universe. 

5.2. The type VI-1,9 solutions 

The two solutions with p # p  (metrics (4.12) and (4.13)) are both non-singular and 
both have f < 0 everywhere. The space-times are therefore geodesically complete, and 
are foliated by time-like homogeneous hypersurfaces. The same applies to solutions 
(4.9) and (4.11) and also to (4.8) when k < 0. In all these cases (in fact, whenever there 
is a negative A term) future null infinity is space-like. 

When k is positive in equation (4.8), there are horizons at U = * ( k / b ) ” z  and the 
surfaces of homogeneity are space-like between the two horizons. The 1“ congruence 
does not encounter any singularities, but the normal congruence becomes singular at 
both horizons (see equation (5.2)). The conformal diagram is therefore as shown in 
figure 2; it is an example of the ‘whimper-whimper’ configuration of Eilis and King 
(1974). As in the case of plane waves, the horizons are not unique, because the 
space-time is homogeneous. 

In the generalised Collinson-French solution (4. lo),  both ‘P3 and ‘P4 diverge as 
U + 0, and these components also diverge in a tetrad which is parallel along the n a  
congruence. When A 3 0 there are no horizons and the homogeneous hypersurfaces 
are space-like. The causal structure is that of figure 3 when A = 0, but has a space-like 
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u - 4 ,  / 
Figure 2. The ‘whimper-whimper’ space-time described by the spin coefficients of (4.8) 
when k > 0. 

A 
Surfaces of 
homogeneity 

c 
_ - - _  

U Z O  \ 

m 

Surfoces of 
homogeneity 

Non -scolOr 
slngularities 

Horizon 

\ Non-scalar 
singulori ty 

Figure 3. A conformal representation of the Collin- Figure 4. A conformal representation of the 
son-French space-time given by equation (4.10) generalised (A < 0) Collinson-French space-time as 
with A = 0. given by equation (4.10). 

null infinity when A > 0. The A = 0 solution is of particular interest because it is a 
vacuum solution with a non-scalar singularity but no horizon. This configuration only 
occurs for type VI-1l9 groups (Siklos 1980). When A < O ,  there are horizons at 
U = 5 ( -  5/A)1’2; these occur in disjoint regions which are separated by the singularity 
at U = a. Each has the structure shown in figure 4. 

5.3. The type (22) solutions 

These fall into the Schrodinger-separable class investigated by Carter (1967, 1968). 
When p # p ,  the only non-zero component of the Weyl tensor in the canmical tetrad, 
q2, cannot diverge, so the solutions have no curvature singularities (7 = 7 = 0 in this 
tetrad). However, when the group is type IX one encounters Taub-NUT-like 
behaviour (Hawking and Ellis 1973). This is a consequence of the group being 
compact, and does not occur for types VI11 and I1 (Siklos 1977, Miller 1977). The p = 6 
solution is LRS Kasner with a cosmological constant (Ellis and MacCallum 1969), and 
has the usual Kasner singularity ai U = 0. The p = 0 solution is non-singular. 
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The conformal diagram for the non-singular solutions can easily be constructed 
from the following properties off. Each real root off  = 0 determines a horizon, and if 
two or more roots are equal, the horizon is degenemte. If an even number of roots are 
equal, the surfaces of homogeneity are space-like (or time-like) on both sides of the 
horizon. Otherwise the hypersurfaces go from space-like to time-like. Each non- 
degenerate horizon is bifurcate (Boyer 1969), and each degenerate horizon is non- 
bifurcate and extends to infinity at both ends. If A > 0, the hypersurfaces ‘near’ null 
infinity are space-like, and if A < 0, they are time-like. In fact for solutions with given 
A/ k (see table 2) the conformal diagra.ms for A > 0 and A < 0 are related by a rotation of 
7r /2 .  The conformal diagram for a solution with two non-degenerate, and one singly 
degenerate horizon, and A < 0 is shown in figure 5 .  The different possibilities for the 
roots of f  = 0 are shown in table 5, for the cases p A  i 0. 

Surfaces of 
homogeneity 

Horizons 

Figure 5. The maximally extended type { 2 2 }  space-time represented by the metric (4.15) in 
the case when the equation f = 0 has four real roots, two of which are equal, and A > 0. The 
points labelled ‘i‘ are at infinity. 

Table 5. The real roots of f = 0, where f is given by equation (4.15) and A # 0. Here 
A = 1 3 - 2 7 J 2  where I = 3 ( k / A I 2  and J = ~ ( k / A ) 2 - 8 ( k / A ) + 4 ] ( k / A - 1 ) - m 2 / 4 A 2 .  

~~ ~ 

Real roots of f = 0 m f O  m=O 

k l h  > 2 4 unequal roots A >0 ,  k / A >  2 

- k / A  = 2 4 roots, two equal pairs 

2 unequal roots A < O  k / A < i  
2 equal roots A = 0 ,  k / A s 2  k / A  = 4 
no roots A > O ,  k l A S 2  1 < k / A  i 2 

4 roots, one equal pair A = O ,  k / A > 2  - 

4 equal roots - l 2  = 0 

5.4. Conformally pat solutions 

These are of course non-singular. The causal structure of the homogeneous hypersur- 
faces can be determined using the method of the preceding paragraph, which applies to 
this case without modification. 
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5.5. Other algebraically special Einstein spaces 

The solutions described in 09 5.1-5.4 do not include those special cases mentioned in 
the introduction. When the only repeated principal null congruences of the Weyl tensor 
lie in the homogeneous hypersurfaces, the space-time is simply foliated by time-like 
hypersurfaces. When the homogeneous hypersurfaces are everywhere null, they must 
also be complete, so the space-time is foliated by null hypersurfaces. Finally, the case of 
Kantowski-Sachs symmetry (Kantowski and Sachs 1966), when there is no simply 
transitive three-parameter group, has been considered by Collins (1977). 
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